Существование на Земле крупных зон растительности обусловлено, как известно, климатическими факторами. При этом - если рассматривать вопрос несколько упрощенно - важнейшую роль играет постепенное снижение температуры от экватора к полюсам. Вместе с тем наблюдается и укорочение периода вегетации. От этих факторов в значительной степени зависит и высота растений в сообществах, которая постепенно снижается от южных районов к северным. Модификации в зонах растительности происходят под влиянием глобального круговорота воздушных масс, разного распределения суши и моря, а также системы течений в Мировом океане. В результате этого внутри таких зон возникают различия между областями с океаническим и континентальным климатом. Чем континентальнее климат, тем меньше, как правило, выпадает осадков и тем сильнее колеблется температура. Разумеется, столь разнообразные условия влияют на распространение не только разных растительных сообществ, но и видов.
Примеры климадиаграмм
Приуроченность распространения видов к крупным зонам растительности определяется прежде всего климатическими факторами. Напротив, распространение видов по континентам обусловлено прежде всего исторически, в то время как частные особенности распространения, то есть дифференцировка на небольших пространствах, а также по вертикали (на разных высотах), определяются опять же климатическими, а отчасти и почвенными (эдафическими) факторами.
Примеры климадиаграмм
Климадиаграммы. Поскольку влияние климата на распространение растений и формирование растительных сообществ очень велико, не удивительно, что многие иследователи занимались этим вопросом уже с давних пор. Для того чтобы иметь возможность судить о влиянии климата на мир растений, необходим как можно более наглядный и пригодный для этой цели способ отображения важнейших климатических факторов. Великое множество конкретных сведений, собранных метеорологическими станциями на протяжении десятилетий, может иметь для геоботаника лишь относительную ценность, даже когда он имеет возможность воспользоваться обобщенными средними величинами. О многих важных для роста растений климатических показателях сводные таблицы либо вообще ничего не говорят, либо для получения этих показателей нужны трудоемкие пересчеты. Кроме того, наглядность таблиц невелика. Прогресс был достигнут, когда эколог растений Г. Вальтер создал принцип построения так называемых климадиаграмм (диаграмм климата). Эти диаграммы весьма компактно и наглядно отражают существенные климатические факторы, которые важны для развития растений. Правда, чтобы впервые "вчитаться" в такую диаграмму, надо приложить некоторые усилия. А поскольку в следующих разделах книги климадиаграммы часто будут использоваться для характеристики зон растительности, постараемся дать общие объяснения на примере трех диаграмм. Все климадиаграммы в нашей книге построены по одним и тем же правилам и лишь иногда несколько отличаются от оригиналов.
По горизонтальной - нулевой - линии отложены месяцы, причем на диаграммах, относящихся к северному полушарию, принята обычная последовательность - от января до декабря, а на тех, что относятся к южному полушарию, - от июля до июня следующего года. Это позволяет получить представление о фактических изменениях климатических факторов и растительности в течение года, от зимы до зимы.
Особое значение для мира растений имеют происходящие в течение года колебания температуры и количество выпадающих осадков, а также взаимосвязь между этими факторами. Шкалу температур наносят на вертикальной стороне диаграммы (слева). Над ней указывают вычисленную по результатам многолетних наблюдений среднегодовую температуру (так, на диаграмме Лагоса, столицы Нигерии, она составляет 26,3°С). У нижнего конца шкалы приведена самая низкая из зарегистрированных до сих пор отрицательная температура (на диаграмме Москвы она равна -40,8°С). Красная линия показывает преемственность средних температур каждого месяца.
На правой стороне диаграммы помещена шкала осадков (количество осадков, выпадающих за месяц); над этой шкалой отмечают среднегодовое количество осадков (на диаграмме Лагоса оно составляет 1830 мм; это усредненные сведения за много лет). Делению на шкале осадков, показывающему 20 мм, соответствует деление, обозначающее 10°С на шкале температур; 40 мм-20°С и т. д. Необходимость соблюдать это соотношение следует подчеркнуть особо, поскольку оно существенно влияет на информативность диаграммы в отношении потребности растений в воде. При этом выявляется следующее: если кривая осадков проходит выше кривой температур, то налицо избыток влаги (гумидные условия). Эту часть диаграммы всегда закрашивают синей краской. Если же кривая осадков находится ниже кривой температур, то этот участок диаграммы соответствует засушливому периоду (аридные условия) и его окрашивают в желто-коричневый цвет (см., например, рис. на стр. 23). Между кривой температур и кривой осадков прослеживается связь, так как первая может служить косвенным показателем испарения. (К сожалению, метеорологические станции испарение обычно не учитывают.) Кривая температур одновременно дает представление и о расходе воды, тогда как кривая осадков, напротив, показывает ее поступление. Обе кривые вместе при выбранном соотношении 2 : 1 характеризуют водный баланс.
Кривую осадков всегда делают синей, а поверхность, заштрихованная синими линиями, дает представление об интенсивности выпадения осадков. Ту часть диаграммы, которая соответствует количеству месячных осадков, не превышающему 100 мм, показывают штриховкой. Если же за месяц выпадает более 100 мм осадков, как это часто бывает, например, в тропиках, то соответствующую площадь на диаграмме закрашивают полностью и при этом уменьшают масштаб в 10 раз. Следовательно, здесь отрезку шкалы, который ниже показывает 20 мм, соответствуют 200 мм осадков. Масштаб уменьшают по нескольким причинам: во- первых, чтобы диаграммы не были слишком большими, во-вторых, потому что столь обильные осадки для растений не имеют серьезного значения, поскольку излишняя вода стекает по поверхности субстрата.
Наступление холодов и их продолжительность, а следовательно, и продолжительность периода, в течение которого морозов не бывает, - также весьма важные факторы. Темно-синие прямоугольники, находящиеся на диаграмме под нулевой линией, показывают то время года, когда среднесуточная минимальная температура оказывается ниже 0°С. Оно соответствует холодному периоду, на протяжении которого могут быть морозы. Светло-синими прямоугольниками, прилегающими к темно-синим, показаны месяцы, в течение которых лишь абсолютная минимальная температура может быть ниже 0°С. Иными словами, в это время заморозки могут наступить, но это бывает не каждый год. Такие весенние и осенние заморозки часто оказываются важными для жизни растений. Незакрашенные прямоугольники соответствуют времени года, когда морозов не бывает. Но эти сведения отражены не на всех диаграммах, поскольку некоторые станции, наблюдающие за погодой, их не фиксируют.
Наконец, следует упомянуть, что на некоторые диаграммы, относящиеся к районам с холодным климатом, наносят еще одну-две важные характеристики, в частности число дней со средней температурой свыше + 10°С и со средней температурой ниже - 10°С (см. диаграмму Москвы). Это говорит о том, что такие температуры и продолжительность их действия представляют собой своего рода пороги для жизни растений. Так, первая характеристика (число дней с температурой + 10° С и выше) вполне соответствует понятию "вегетационный период".
Распространение падуба остролистного (Ilex aquifolium) в Европе и сопоставление восточной границы его ареала с двумя климатическими изолиниями. 1 - январская изотерма 0°С; 2 - максимальная температура 345-ти дней в году не ниже 0°С
Вслед за названием географического пункта, где расположена метеостанция, в скобках указывают высоту положения этого пункта над уровнем моря.
Как нетрудно убедиться, климадиаграммы содержат весьма обширную информацию. Сходные диаграммы, даже если они построены по результатам наблюдений в разных районах земного шара, свидетельствуют о сходных экологических условиях и сходных типах растительности, в первую очередь в отношении их внешнего облика. Однако в видовом составе могут быть очень большие различия, поскольку, как уже упоминалось, в становлении растительных сообществ большую роль играют исторические факторы.
Если климадиаграммы оценивать с экологической точки зрения, то следует иметь в виду, что они обладают и некоторыми недостатками. Как известно, учет всех показателей, собираемых на станциях, проводится в так называемых метеорологических будках при соблюдении единых и определенных условий, в тени и на высоте 2 м над поверхностью почвы. Но растения (если речь идет не об обитателях леса, развивающихся под его пологом) естественно облучаются прямым солнечным светом, что необходимо учитывать при суждении об их водном и тепловом режимах. Во-вторых, из-за того, что приборы подняты над поверхностью, результаты измерений отражают лишь так называемый макроклимат. Он характеризует условия жизни деревьев, но не низкорослых растений; для выявления условий существования последних следует определять микроклимат припочвенных слоев воздуха. А микроклимат может весьма существенно отличаться от макроклимата, в чем мы впоследствии убедимся. Наконец, для построения климадиаграмм используют лишь среднемноголетние данные. В действительности же такие значения климатических характеристик могут соответствовать конкретным, но могут и не соответствовать. Между тем для растений важны не статистические усредненные, а фактические проявления климатических факторов, часто оказывающиеся даже экстремальными. С другой стороны, естественные растительные сообщества, находящиеся в равновесии с окружающей средой, развивались очень долго (леса, например, часто на протяжении сотен лет), и за это время проявлялись все экстремальные значения климатических факторов. Поэтому, несмотря на сказанное, средние величины все же позволяют охарактеризовать основные факторы внешней среды.
Границы ареалов и климатические изолинии. Границы распространения отдельных видов иногда обнаруживают поразительные совпадения с определенными климатическими изолиниями. Это могут быть изолинии, соответствующие какой-то температуре, количеству осадков, продолжительности воздействия того или иного климатического фактора или определенной его интенсивности и т. п. Выявлением такого рода зависимостей с давних времен занимались некоторые фитогеографы. Но часто результаты таких исследований не оправдывали ожиданий, поскольку обычно пытались сравнивать границы ареалов с изолинией проявления какого- либо одного климатического фактора. Конечно, известны случаи, когда граница ареала определяется одним решающим фактором, а именно тем, который выражен минимально, и тогда можно обнаружить известную взаимозависимость. Но если граница ареала определяется совокупностью факторов или рядом факторов, накладывающихся друг на друга, такие попытки ни к чему не приводят.
Общеизвестен пример совпадения восточной границы ареала падуба остролистного (Ilex aquifolium) с январской изотермой 0°С. Еще лучше эта граница согласуется с климатической изолинией, значение которой таково: максимальная температура 345 суток в году выше 0°С. Хорошая корреляция обнаруживается также между январской изотермой -2°С и восточной границей бука лесного (Fagus sylvatica). Подобные же совпадения с изотермами можно установить у границ ареалов дуба, ели и липы сердцелистной.
Из сказанного не следует делать вывод, что климатические изолинии непосредственно действуют как ограничивающие факторы и что между двумя этими явлениями якобы существует причинная связь. Здесь речь идет скорее о совпадениях, то есть о параллелизме двух разных явлений или факторов. Чтобы продемонстрировать различие между причинностью и совпадением, воспользуемся таким примером: вполне возможно, что в какой-то области граница ареала популяции аиста проходит почти параллельно линии, показывающей определенную частоту рождаемости людей. Это следует считать совпадением. Если же в таком параллелизме линий усмотреть причинную зависимость, то это значило бы, что аисты-то и приносят детей!
Хотя в примерах с падубом или буком это не столь очевидно, но и здесь принципиальных отличий нет. Во всяком случае, упомянутое выше совпадение можно истолковать как показатель того, что для определения восточной границы ареала падуба, по-видимому, важен температурный фактор - вероятно, все увеличивающиеся к востоку продолжительность и суровость зимы, которые и ограничивают продвижение этого вида на восток.
Примерно так же следует объяснять совпадения между границами ареалов и количеством выпадающих осадков. Находящийся под охраной в ГДР, ФРГ и Швейцарии адонис весенний (Adonis vernalis) в основном распространен в восточно-европейских и сибирских луговых степях, но заходит также далеко на запад, в Центральную Европу; его местообитания образуют здесь подобные островкам эксклавы (см. карту). Если в пределах того участка Центральной Европы, который показан на рисунке, местообитания адониса сопоставить с картой выпадения осадков, то обнаружится, что это растение в основном встречается в районах, где за год выпадает менее 500 мм осадков. Этот пример свидетельствует лишь о том, что осадки в какой-то мере ограничивают распространение растений, но, разумеется, не непосредственно; иными словами, нельзя говорить, что ограничивающий фактор - это определенное среднее количество осадков. В случае с адонисом, как и с другими так называемыми степняками (растениями степей), встречающимися и в Центральной Европе, следует говорить, вероятно, лишь об опосредованном влиянии осадков, поскольку и адонис, и подобные ему виды превосходно чувствуют себя в садовой культуре и в тех областях, где осадков выпадает значительно больше. При этом решающим оказывается то обстоятельство, что в саду нет конкуренции со стороны других видов. В относительно сухих местообитаниях с "теплыми" известковыми почвами, покрывающими обычно хорошо освещенные южные и юго-западные склоны, где как раз и встречаются адонис и другие степняки, среднеевропейские луговые растения растут довольно плохо, и здесь с ними могут конкурировать медленно развивающиеся представители степных видов. Но если такое местообитание будет орошено или в результате внесения удобрений будут созданы более благоприятные для развития условия, то восточноевропейские степные растения будут быстро вытеснены представителями среднеевропейских луговых видов.
Местонахождения адониса весеннего (Adonis vernalis) в ГДР и на прилегающих территориях Центральной Европы. Желтым цветом. показаны области, где в год выпадает в среднем менее 500 м осадков
Влияние микроклимата. В Центральной Европе на склонах южной и юго-западной экспозиции нередко произрастают виды, распространенные в основном в значительно более теплых регионах, таких, как Средиземноморская область или уже упоминавшиеся восточноевропейские степи. Легко предположить, что существование изолированных местообитаний, находящихся далеко от основного, четко ограниченного ареала, определяет температура. В некоторых случаях измерения температур подтверждают вероятность такого предположения. Например, непосредственно над сухими, одетыми травяным покровом южными склонами близ Йены в полдень регистрировали температуру свыше 50-60°С, что примерно вдвое превышало температуру воздуха на высоте 2 м. На юге бассейна р. Эльбы в горах, сложенных песчаниками, средняя (за ряд лет) максимальная температура поросшего мхом участка, подвергавшегося прямому солнечному облучению, достигала 52,6°С. Если, учитывая результаты этих измерений, вычислить среднегодовую температуру, то она составит приблизительно 23,3°С, а это примерно соответствует среднегодовой температуре Сахары! Но на очень небольшом удалении от того места, где производились измерения, на затененном северо-восточном обрыве, также покрытом мхами, средняя максимальная температура оказалась равной всего 15,9°С. Рассчитанная же с ее учетом среднегодовая температура достигала приблизительно 6,2°С, а это температурный показатель макроклимата южной Скандинавии!
Котловинное понижение с болотом, возникшим в результате зарастания озера, в районе с конечно-моренным рельефом
Даже в Арктике поверхность почвы участка, на который солнечные лучи падают почти отвесно, может сильно нагреваться, примерно до 50°С.
Распространение в Центральной Европе бореальных* видов, таких, как багульник болотный (Ledum palustre), шейхцерия болотная (Scheuchzeria palustris), голубика (Vaccinium uliginosum), клюква болотная (Vaccinium oxycoccos) и др., часто ограничивается болотами, расположенными в котловинах. Здесь температура также играет существенную роль. В таких местообитаниях температура сильно колеблется как в течение суток, так и на протяжении года, чему нередко способствует скопление над ними масс холодного воздуха. Для этих болот характерны весенние и осенние заморозки и вообще относительно позднее начало и раннее окончание вегетационного периода. Если бы здесь продолжительное время проводились измерения показателей микроклимата, результаты которых были бы наглядно отображены на климадиаграммах, то, бесспорно, об этом можно было бы судить более обстоятельно.
* (Бореальный - северный (по латыни borealis, от греческого boreas).)
Экотипы и смены биотопов. Ареалы большинства видов охватывают довольно большие территории, нередко значительные части целых континентов (разумеется, сейчас речь идет не о растениях- космополитах), и при этом простираются через области с разными климатическими условиями.
Во многих случаях оказывается, что способность вида существовать при различных условиях внешней среды приводит к его дифференцировке на экотипы. Экологически неоднородными оказываются не только многие виды, но нередко и более мелкие таксономические группы растений - подвиды и т. п. Такие экологически различающиеся формы одного вида иногда могут отличаться друг от друга даже некоторыми внешними признаками, хотя это и не обязательно. Поэтому установить, имеем ли мы дело с экотипами, можно только путем эксперимента. Нередко экотипы бывают ограничены в своем распространении лишь частью видового ареала и тяготеют к определенным условиям местообитаний. Лесоводы знают это давно и учитывают при выращивании древесных пород, стремясь предотвратить неблагоприятные экономические последствия. Например, всем известный вид - сосна обыкновенная (Pinus sylvestris) - состоит из ряда климатических рас, которые сменяют одна другую с юга на север и с востока на запад и в соответствующих областях обнаруживают наилучшую способность развиваться. Лапландская сосна из северной Швеции приспособилась к существенно иным проявлениям климатических факторов, чем сосны из Центральной Европы, северной Италии или, тем более, Испании. Деревья первой расы едва ли смогут хорошо расти в южных районах. Здесь мы говорим о климатических экотипах, называемых в лесоводстве расами разного географического происхождения, которые свойственны многим видам важных для лесного хозяйства древесных пород. Но образование экотипов известно и у видов травянистых растений. Укажем лишь на существование равнинных и горных экотипов или таких, которые предъявляют разные требования к почвам (эдафические экотипы).
Сложенный ракушечником и обращенный к югу склон долины реки Лёйтры близ Йены, травостой которого богат растениями степей и пустошей
Если вид в разных частях своего ареала встречается в различных местообитаниях, то это вовсе не всегда следует объяснять возникновением экотипов. Как раз в краевых частях ареалов часто можно обнаружить смену местообитаний, или биотопов.
Мы уже упоминали, что многие виды равнинных восточноевропейских степей в Центральной Европе встречаются только на склонах южной экспозиции, характеризующихся особым микроклиматом с благоприятным для этих растений температурным режимом. Кроме того, многие из них связаны с известковыми почвами, тогда как в областях своего основного распространения они одинаково хорошо растут на всех почвах. Примерами таких растений могут служить прострел обыкновенный (Pulsatilla vulgaris), астра златокудрая, или солонечник льновидный (Aster linosyris, = Galatella linosyris) и многие среднеевропейские орхидеи. В целом можно сказать, что виды, произрастающие в областях с континентальным климатом и встречающиеся на востоке на всех почвах (то есть не приуроченные к каким- либо определенным почвам), тем больше предпочитают известковые почвы, чем дальше к западу или к северу находятся местообитания их представителей. И наоборот, имеются виды, живущие в основном в районах с влажным и прохладным атлантическим климатом, где колебания температуры незначительны; здесь эти виды, в частности вереск обыкновенный (Calluna vulgaris), встречаются на открытых территориях и растут на самых разных почвах, но в восточных областях они приурочены к кислым, а нередко и к влажным почвам и еще дальше на восток становятся лесными растениями. С другой стороны, многие лесные растения Центральной Европы, произрастающие на легких или умеренно влажных почвах, в сухих областях юго- восточной Европы встречаются только в заболоченных и пойменных лесах.
Распространение пихты белой (Abies alba) (1) и бука лесного (Fagus sylvatica) (2) в Европе
Такую смену биотопов не следует уподоблять изменению экологического "поведения" растений, скорее речь идет об относительном постоянстве местообитаний. Впервые на это обратил внимание уже упоминавшийся нами эколог растений Вальтер, который дал такую формулировку: "Если в пределах ареала какого-либо вида растений климат меняется определенным образом, то этот вид в свою очередь часто меняет местообитание, или биотоп, что в известной степени компенсирует изменения климата. А это значит, что обеспеченность местообитания вида теплом и водой в пределах ареала остается сравнительно постоянной". В этом и заключается суть правила относительного постоянства местообитаний.
Схема высотного распространения бука лесного (наверху) и пихты белой на профиле, проведенном от южной Скандинавии до Апеннин
Высотные пояса. До сих пор мы рассматривали распространение растений преимущественно, так сказать, по горизонтали. Но можно говорить и об их распространении по вертикали, то есть на разных высотах. Всякий, кому доводилось бывать в горах, мог, поднимаясь все выше, заметить, что на разных высотах состав видов разный и большинство из них доходит только до определенной высоты или начинает встречаться лишь с определенной высоты. На картах ареалов такое "поэтажное" распространение отобразить трудно, а то и вовсе невозможно. Но для наглядного изображения этого явления можно использовать схемы-профили, например такие, как приведенные здесь и показывающие вертикальное распространение бука лесного (Fagus sylvatica) и пихты белой, или европейской (Abies alba). Эти профили начинаются на севере (примерно в южной Швеции) и тянутся через Балтийское море, Среднеевропейскую равнину, горы Центральной Европы и Альпы до Апеннин на юге. Чем южнее растут эти деревья, тем выше их можно встретить (это относится к буку и пихте). Что касается, например, пихты, то она вообще обитает лишь в горных районах. Такая высотная поясность в распространении растений обусловлена климатом и находится в соответствии с правилом относительного постоянства местообитаний.
Проявление во флоре и растительности дифференцировки на высотные пояса наблюдается на Земле повсюду; эта дифференцировка постоянно и в первую очередь определяется изменением климатических факторов; особую роль играет тепловой режим. Обычно различают шесть высотных поясов. Нижний пояс - пояс равнин, за ним следует пояс холмов, далее - горный пояс (или средний горный). Идущий за ним ореальный пояс* охватывает выше расположенные горные районы; верхняя граница распространения леса довольно четко отделяет его от находящихся еще выше субальпийского и альпийского поясов. Хотя такая высотная поясность и проявляется повсеместно, высота расположения поясов в разных районах земного шара весьма различна. Одноименные пояса в тропиках находятся значительно выше, чем в умеренных широтах, а ближе к полюсам они расположены еще ниже и становятся более узкими (см. т. 2). Также различны их флористический состав и совокупность определенных растительных сообществ. Высотный пояс - понятие климатическое; связывать с тем или иным поясом определенные виды растений и типы растительности можно, лишь имея в виду определенный регион.