НОВОСТИ    КНИГИ    ЭНЦИКЛОПЕДИЯ    КАРТА ПРОЕКТОВ    ССЫЛКИ    О САЙТЕ


02.08.2016

Гибридизация однодомных и двудомных растений увеличивает разнообразие половых фенотипов

В последнее время накапливается все больше сведений в поддержку так называемой «сетчатой эволюции». Речь идет о происхождении новых форм путем гибридизации двух других. Первый шаг этого процесса - появление гибридных популяций с какими-то особыми свойствами. Часто это причудливая смесь черт родительских форм - неважно, принадлежат ли они к одному виду или к разным. Некоторые виды растений распадаются на однодомные и двудомные популяции. В однодомных - на каждом растении есть и мужские, и женские органы, а в двудомных - мужские и женские органы находятся на разных растениях. На примере стрелолиста канадские ученые показали, что гибридизация исходно однодомных и двудомных популяций может вести к формированию смешанных популяций, в которых в разных соотношениях присутствуют гермафродиты (однодомные) и мужские и/или женские растения. Это новый механизм формирования разнообразия половых фенотипов в популяциях растений.

Рис. 1. Стрелолист широколистный (Sagittaria latifolia)
Рис. 1. Стрелолист широколистный (Sagittaria latifolia)

Многие годы ученые игнорировали значения для популяций животных такого явления, как межвидовая гибридизация. Но в последние десятилетия стали накапливаться данные о важной роли гибридизации в некоторых случаях. Главное значение ее в том, что приток генов от другого вида изменяет и разнообразит генофонд популяции данного вида. А это, в свою очередь, может повлиять на его судьбу, приспособленность к среде обитания и прочие параметры.

Недавно канадские ученые выяснили, как и к чему еще может приводить межвидовая гибридизация - на этот раз у высших растений.

Известно, что большинство представителей этой группы являются однодомными. Это значит, что каждое растение обладает и пестиками (женские половые органы), и тычинками (мужские половые органы) и является таким образом гермафродитом. Но около 6–7% всех видов - двудомные, у которых пестики и тычинки находятся на разных (мужских и женских) растениях. А иногда встречаются и интереснейшие ситуации, переходные между однодомностью и двудомностью. Например, в одной популяции могут одновременно присутствовать растения мужские, женские и гермафродиты.

Откуда взялось такое разнообразие систем размножения? Обычно считают, что в эволюции растений чаще встречался переход от однодомности к двудомности, нежели наоборот, а переходная ситуация является неустойчивой. Она возникает, когда женские растения попадают из двудомной популяции в однодомную. Они «помогают» здесь однодомным гермафродитам избегать инбридинга (проще говоря - самоопыления). Постепенно у гермафродитов женские половые органы перестают функционировать, и они становятся мужскими растениями, то есть популяция становится двудомной. Но в целом такие смешанные популяции растений изучены еще недостаточно, поэтому тут может быть много открытий. С одной из таких ситуаций и разобрались ученые, написавшие обсуждаемую статью.

Они изучали стрелолист широколистный (Sagittaria latifolia) из семейства Частуховые (Alismataceae); рис. 1. Это многолетнее водное растение широко распространено в Северной Америке и встречается в самых разных типах водоемов. На северо-востоке Северной Америки около 2/3 популяций являются либо однодомными, либо двудомными (рис. 2).

Рис. 2. Географическое распространение однодомных (количество популяций n = 25, серые кружки), двудомных (n = 27, белые квадраты), смешанных (гермафродиты и мужские и женские фенотипы, n = 13, черные треугольники), андро-двудомных (мужские фенотипы и гермафродиты, n=6, черные шестиугольники) и гино-двудомных (женские фенотипы и гермафродиты, n = 1, ромб). Всего 72 популяции
Рис. 2. Географическое распространение однодомных (количество популяций n = 25, серые кружки), двудомных (n = 27, белые квадраты), смешанных (гермафродиты и мужские и женские фенотипы, n = 13, черные треугольники), андро-двудомных (мужские фенотипы и гермафродиты, n=6, черные шестиугольники) и гино-двудомных (женские фенотипы и гермафродиты, n = 1, ромб). Всего 72 популяции

В остальных доля гермафродитов (то есть однодомных растений) варьирует от 11 до 79%, а остальные - это мужские и/или женские растения (рис. 3).

Рис. 3. Разнообразие фенотипического состава 116 популяций (включая те 72, что изображены на рис. 2) стрелолиста широколистного. По оси Y — доля разных фенотипов. Внизу все популяции условно классифицированы на три группы: к смешанным здесь относятся как собственно смешанные, так и андро-двудомные и гино-двудомные (см. рис. 2)
Рис. 3. Разнообразие фенотипического состава 116 популяций (включая те 72, что изображены на рис. 2) стрелолиста широколистного. По оси Y - доля разных фенотипов. Внизу все популяции условно классифицированы на три группы: к смешанным здесь относятся как собственно смешанные, так и андро-двудомные и гино-двудомные (см. рис. 2)

У стрелолиста широколистного есть еще одна интересная особенность. Половой фенотип растения определяется всего двумя локусами. Первый - это локус «женской» стерильности, доминантный аллель которого (SuF) подавляет развитие женских половых органов. А в локусе «мужской» стерильности всё наоборот: доминантный аллель SM необходим для развития мужских половых органов. Таким образом, в однодомных популяциях все растения имеют генотип SufSM/SufSM. В двудомных популяциях генотип женского растения SufSm/SufSm, а мужские фенотипы имеют одну из двух комбинаций: SuFSM/SufSm или SufSM/SufSm. Выше большая надстрочная буква обозначает доминантный аллель данного гена (например, SM), а маленькая - рецессивный (например, Sm). Схожая система определения пола известна и у некоторых других растений.

Разница между однодомными и двудомными популяциями не сводится только к различиям в комбинациях аллелей. Интересно, что они различаются и экологией - требованиям к местообитанию, временем цветения, массой семян и др. (рис. 4).

Рис. 4. Диаграмма рассеяния, показывающая различия между однодомными (n = 16, белые кружки) и двудомными (n = 11, черные квадраты) популяциями стрелолиста широколистного. PC1 и PC2 — соответственно первая и вторая компоненты, полученные анализом главных компонент. Эти компоненты объясняют 29% и 23% изменчивости массива данных из многих переменных, характеризующих особенности жизненного цикла. Среди них высота растения, число листьев на одном растении, день цветения, общая масса семян одного растения, масса одного семени и др. Таким образом, диаграмма характеризует различия между однодомными и двудомными популяциями сразу по многим экологическим параметрам
Рис. 4. Диаграмма рассеяния, показывающая различия между однодомными (n = 16, белые кружки) и двудомными (n = 11, черные квадраты) популяциями стрелолиста широколистного. PC1 и PC2 - соответственно первая и вторая компоненты, полученные анализом главных компонент. Эти компоненты объясняют 29% и 23% изменчивости массива данных из многих переменных, характеризующих особенности жизненного цикла. Среди них высота растения, число листьев на одном растении, день цветения, общая масса семян одного растения, масса одного семени и др. Таким образом, диаграмма характеризует различия между однодомными и двудомными популяциями сразу по многим экологическим параметрам

Итак, что же выяснилось в данном исследовании? Первоначальной задачей было проанализировать хлоропластную ДНК (хлДНК), то есть ДНК, содержащуюся в хлоропластах. Всего было изучено 66 популяций. Оказалось, что здесь можно выделить две группы гаплотипов - D и M. При этом двудомные популяции (n = 22) включали растения почти исключительно с гаплотипом D, а большинство однодомных (22 из 25) - с гаплотипом M. Популяции смешанного состава (в которых наряду с гермафродитами присутствовали мужские и/или женские растения) по составу гаплотипов были более разнообразны. В большинстве случае они состояли из растений обоих гаплотипов в тех или иных пропорциях (рис. 5).

Рис. 5. Частоты гаплотипов D (черный) и М (серый) в двудомных (А), смешанных (В) и однодомных (С) популяциях стрелолиста. Сокращения латинскими буквами указывают на отдельные популяции
Рис. 5. Частоты гаплотипов D (черный) и М (серый) в двудомных (А), смешанных (В) и однодомных (С) популяциях стрелолиста. Сокращения латинскими буквами указывают на отдельные популяции

Эти данные навели ученых на мысль о возможности гибридного происхождения смешанных популяций. Для проверки этого предположения они дополнительно изучили набор микросателлитов. Микросателлиты - это короткие повторы последовательностей из нескольких пар оснований. Они характеризуются значительной индивидуальной и популяционной специфичностью и потому часто используются, например, для определения родства или выявления гибридных особей. В последнем случае в специальных программах можно рассчитать гибридные индексы, характеризующие вероятность гибридного происхождения данной особи.

Оказалось, что набор используемых микросателлитов позволяет легко разделять двудомные и однодомные популяции стрелолиста (рис. 6, А и B). А вот в смешанных популяциях различного состава присутствовало много особей гибридного происхождения (рис. 6, С). Таким образом, данный анализ подтвердил, что в смешанных популяциях имеется много гибридов между растениями из однодомных и двудомных популяций. При этом такие гибриды (не обязательно первого поколения) могут быть как гермафродитами, так и женскими или мужскими особями.

Рис. 6. Гибридные индексы (по оси Y) особей из однодомных (A), двудомных (B) и смешанных (C) популяций стрелолиста. Номера особей даны по оси X. Значение индекса, близкое к 1,0, указывает на принадлежность к однодомным популяциям. Близкое к 0,0 - к двудомным. А значение 0,5 характеризует гибрида
Рис. 6. Гибридные индексы (по оси Y) особей из однодомных (A), двудомных (B) и смешанных (C) популяций стрелолиста. Номера особей даны по оси X. Значение индекса, близкое к 1,0, указывает на принадлежность к однодомным популяциям. Близкое к 0,0 - к двудомным. А значение 0,5 характеризует гибрида

Значит, происхождение смешанных популяций стрелолиста во многих случаях обусловлено гибридизацией растений из исходно двудомных и однодомных популяций. Итог такой гибридизации - увеличение разнообразия половых фенотипов в данной гибридной популяции. Пока не ясно, как такое увеличение может отразиться (и отразится ли) на эволюционном успехе. Однако такой необычный итог гибридизации представляет интерес и сам по себе.

Источник: Sarah B. Yakimowski, Spencer C. H. Barrett. The role of hybridization in the evolution of sexual system diversity in a clonal, aquatic plant // Evolution. 2016. V. 70. P. 1200–1211.

Алексей Опаев


Источники:

  1. elementy.ru



Фрукты, которые могут вас убить

Растения-сорняки отрастили пыточные шипы для защиты от насекомых

Растения в первую очередь защищают от вредителей свои цветки

Десять фактов, которые вы не знали о бамбуке

Тысячелетняя роза - цветок, переживший бомбежки, пожары и разрушения

Ученые открыли новый способ повышения устойчивости растений

Растения умеют искать воду

На Шпицбергене подтопило международный банк семян

Растения научились приручать шмелей никотином

«Все равно что сжечь шедевры Лувра»

Семена вьюнка способны выдержать космическое путешествие

Топ-10 самых ядовитых растений в мире

Растения приспосабливаются к новым опылителям всего за несколько поколений

Биологи рассказали о растениях, имитирующих животных

Растения обнаружены на рекордной высоте

Самые опасные растения, о которых нужно знать, чтобы не стать их жертвами

В МГУ заработал один из крупнейших в мире цифровых гербариев

Растения с трех континентов пришли к хищничеству одним путем



© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, оформление, разработка ПО, 2001-2018
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://plantlife.ru/ 'PlantLife.ru: Статьи и книги о растениях'

Рейтинг@Mail.ru Ramblers Top100