Новости    Библиотека    Энциклопедия    Карта проектов    Ссылки    О сайте
предыдущая главасодержаниеследующая глава

Водородные бактерии

Окислять молекулярный водород могут микроорганизмы, относящиеся к разным таксономическим группам. Среди них есть строгие анаэробы, факультативные анаэробы и облигатные аэробы. К анаэробным микроорганизмам, окисляющим Н2, принадлежат многие фототрофные и метанобразующие бактерии, некоторые представители десульфатирующих бактерий (Desulfovibrio desulfuricans) и клостридий (Clostridium aceticum, С. pasteurianum). К факультативным анаэробам и аэробам, обладающим таким свойством, относятся Escherichia coli, Paracoccus denitrificans, Streptococcus faecalis и некоторые представители: Bacillus, Pseudomonas, Alcaligenes, Acetobacter, Azotobacter, Mycobacterium, Nocardia, Proteus, а также отдельные виды сине-зеленых и зеленых водорослей.

Однако далеко не все из перечисленных микроорганизмов растут за счет окисления молекулярного водорода в автотрофных условиях и сохраняют эту способность в течение длительного времени. Такая возможность имеется у фототрофных бактерий, но для этого им необходим источник энергии в виде света, а Нг служит только донором водорода (Н-донором) при фотоассимиляции углекислоты и в других конструктивных процессах. Для десульфатирующих бактерий молекулярный водород может являться энергетическим субстратом и обеспечивать восстановление углекислоты. Но наряду с углекислотой эти микроорганизмы требуют наличия готовых органических соединений. Следовательно, к автотрофам они не относятся. Аналогичным образом, видимо, используют молекулярный водород и метанобразующие бактерии.

Таким образом, микроорганизмов, использующих как источник энергии молекулярный водород и как единственный источник углекислоту, не так много, причем большинство растет в аэробных условиях и окисляет Н2 с использованием О2. Такие микроорганизмы принято называть водородными бактериями или бактериями гремучего газа. Первые описания их были даны одновременно Лебедевым и Казерером в 1906 г., хотя биологическая природа процесса окисления молекулярного водорода в почве была установлена несколько раньше.

Вскоре после открытия автотрофных во-дородокисляющих микроорганизмов Орла-Иенсен ввел для них название Hydrogenomonas, которое до последнего времени широко применяется. Однако как самостоятельная таксономическая единица этот род сейчас не принимается. На основании изучения свойств разных представителей гидрогеномонад, проведенного в последнее время под руководством Р. Стениера, предлагается часть из них отнести к роду Pseudomonas, а часть - к роду Alcaligenes. И те и другие водородокисляющие автотрофные бактерии представляют собой бесспоровые грамотрицательные палочки (0,3 - 0,7 X 0,8 - 2,9 мкм). Но у бактерий, причисляемых к роду Pseudomonas, жгутики расположены полярно или субполярно, тогда как представители рода Alcaligenes относятся к перитрихам, хотя количество жгутиков бывает весьма ограниченным (дегенеративно-перитрихиальный тип жгутикования).

К псевдомонадам, способным окислять молекулярный водород и расти в автотрофных условиях, принадлежат следующие виды: Pseudomonas flava, Ps. palleronii, Ps. facilis, Ps. saccharophila, Ps. ruhlandii. Водородные бактерии, включенные в род Alcaligenes, представлены A. europhus и A. paradoxus. Кроме этих микроорганизмов, известны и другие, растущие в автотрофных условиях за счет окисления молекулярного водорода. К ним принадлежат некоторые представители рода Nocardia (N. ораса) и другие грамположительные бактерии.

На минеральной среде в присутствии Н2 и СО2 растет, но медленно Paracoccus denitrificans, ранее известный под названием Micrococcus denitrificans. Этот грамотрицательный кокковидный микроорганизм интересен тем, что является факультативным анаэробом. В отсутствие воздуха он восстанавливает нитраты, нитриты и закись азота (N2O) с образованием молекулярного азота, используя эти соединения как акцепторы электронов вместо О2. Однако в анаэробных условиях рост P. denitrificans происходит только в присутствии органических субстратов, хотя способность окислять молекулярный водород сохраняется.

Наконец, следует отметить, что молекулярный водород используют все микроорганизмы, способные окислять окись углерода. К таковым принадлежат недавно выделенные в лаборатории Г. А. Заварзина бактерии, названные Selliberia carboxydohydrogena. Это мелкие, подвижные, палочковидные, иногда изогнутые формы (0,3 X 0,6 - 1,2 мкм), образующие розетки. Рост культур возможен в аэробных условиях в присутствии СО и СО2 или Н2 и СО2.

Водородные бактерии растут на простых синтетических средах, содержащих в качестве источника азота соли аммония, нитраты, мочевину, некоторые аминокислоты, производные пуринов. Источником серы обычно служат сульфаты. Кроме солей фосфора, магния, калия, кальция, в среды добавляют микроэлементы, в число которых входят железо и никель. Для забуферивания среды вносят бикарбонат. Это помогает поддерживать значение рН на уровне (6,5 - 7,5), обеспечивающем достаточно быстрый рост культур. Оптимальная температура для роста разных видов и штаммов 28 - 35 °С. Известен лишь один представитель, описанный под названием Hydrogenomonas thermophiles, для которого оптимальная температура около 50 °С.

Рост водородных бактерий в автотрофных условиях зависит от снабжения их углекислотой, водородом и кислородом. При составлении газовых смесей учитывают потребление бактериями отдельных компонентов, а также чувствительность разных представителей водородных бактерий к молекулярному кислороду. Обычно применяемые газовые смеси содержат 10% СО2, 10 - 30% О2 и 60 - 80% Н2. Окисление молекулярного водорода кислородом воздуха отражает уравнение


Однако, судя по потребляемым газам, общий результат процесса с учетом использования части водорода на восстановление углекислоты отвечает уравнению


где (СH2О) - условное обозначение образующихся органических веществ.

Способность водородных бактерий и других микроорганизмов окислять молекулярный водород связана с наличием у них водородактивирующей системы, называемой гидрогеназой.

Окисление водорода с получением энергии в виде АТФ происходит через электрон-транспортную цепь, компонентами которой, по имеющимся данным, являются НАД, флаво-протеиды (ФП), цитохромы и, возможно, хи-ноны (X):


Однако у разных представителей водородных бактерий могут быть некоторые различия как в составе переносчиков электронов, так и в возможных путях переноса электронов от молекулярного водорода на кислород. Эффективность использования энергии может достигать 30%. Ассимиляция углекислоты водородными бактериями, как и у других хемоавтотрофов, происходит в основном при участии пентозофосфатного восстановительного цикла углерода (цикла Кальвина). Кроме того, происходит фиксация углекислоты на фосфоенолпирувате, который легко образуется из фосфоглицерата. Продукт реакции - щавелевоуксусная кислота - может включаться в цикл трикарбоновых кислот, обеспечивая образование других органических кислот, необходимых для синтеза аминокислот и порфириновых компонентов клеток.

Помимо образования из СО2 основных соединений клеток, водородные бактерии могут синтезировать из нее большие количества (50% и более от сухой биомассы) поли-β-оксибутирата, который является запасным продуктом. Образованию этого полимера способствует недостаток в среде азота, серы, фосфора, а также дефицит кислорода. Кроме поли-β-оксибутирата, водородные бактерии накапливают полифосфаты.

В отличие от большинства нитрифицирующих бактерий, а также некоторых тионовых бактерий, все известные представители водородных бактерий хорошо растут на органических средах в отсутствие молекулярного водорода. При этом органические соединения служат для них энергетическими субстратами и основными источниками углерода. К числу органических соединений, используемых разными представителями водородных бактерий, относятся глюкоза, глюконат, ацетат, фумарат, сукцинат, лактат, β-оксибутират, малат, пируват, аспартат, глутамат, аланин и фенилаланин.

В отношении использования других органических соединений, например Сахаров и спиртов, отдельные представители проявляют большие или меньшие различия.

Переключение водородных бактерий на гетеротрофный образ жизни, как правило, снижает их способность окислять молекулярный водород и фиксировать углекислоту. Первое обусловлено тем, что в присутствии органических соединений происходит подавление синтеза гидрогеназной системы, а второе связано с репрессией синтеза рибулезодифосфаткар-боксилазы, которая участвует в фиксации углекислоты через цикл Кальвина. Однако не все органические субстраты и не у всех водородных бактерий действуют на эти процессы одинаково.

Показано также, что молекулярный водород может оказывать существенное влияние на использование этими микроорганизмами некоторых органических субстратов. Ингибиция потребления водородными бактериями органических соединений в присутствии Н2 получила название "водородного эффекта". Он проявляется, например, в отношении использования водородными бактериями фруктозы и обусловлен подавлением синтеза ферментов, участвующих в ее разложении. Кроме того, Н2 может ингибировать активность некоторых ферментов.

Выше отмечалось, что водородные бактерии принимают активное участие в окислении водорода в природных условиях, где он может образовываться в результате деятельности определенных групп микроорганизмов. Культуры этих бактерий легко получить из почвы и многих водоемов, где идет разложение органических веществ. В настоящее время водородные бактерии привлекают к себе большое внимание в связи с такими практическими задачами, как получение дешевого пищевого и кормового белка, а также для регенерации атмосферы в замкнутых системах. Обе эти проблемы весьма актуальны, в частности в связи с развитием космических полетов. По сравнению с другими автотрофными микроорганизмами водородные бактерии характеризуются высокой скоростью роста и могут давать большие урожаи биомассы. Установлено также, что белки водородных бактерий полноценны по аминокислотному составу и усваиваются животными. Необходимые для развития водородных бактерий компоненты, а именно водород и кислород, получают в результате электролиза воды. Что касается источников углерода и азота, то они также легко доступны и могут быть продуктами отходов, которые подлежат удалению.

Помимо практических задач, изучение водородных бактерий представляет большой интерес для понимания особенностей автотрофов и регуляции их метаболизма.

предыдущая главасодержаниеследующая глава




Жизнь растений
Подписаться письмом



Диски от INNOBI.RU

© Злыгостев Алексей Сергеевич подборка материалов, оцифровка, оформление, разработка ПО 2001-2017
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://plantlife.ru/ "PlantLife.ru: Статьи и книги о растениях"